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Text S1: Background and importance of snow cover phenology study 

Snow cover over the Northern Hemisphere (NH) plays a crucial role in the Earth’s 

hydrological cycle and in energy balance its surface. It modulates feedbacks that control 

variations of the global climate S1. Previous studies have proven that the snow cover in the 

NH has experienced a well-documented rapid decrease S2-5. For example, based on an 

estimation obtained from multiple datasets, Brown, et al. S5 found that the May and June 

snow cover extents (SCE) have decreased by14% and 46%, over the pan-Arctic region 

from 1967 to 2008. Derksen and Brown S3 further proved that the June SCE had decreased 

nearly twice as fast as the widely publicized September sea ice extent did between 1979 

and 2011, especially in the later part of that period. SCE reductions in the 2008–2012 

period have even exceeded climate model projections S3. 

This trend will continue in the future according to climate projectionsS4,S6, coincident 

Changes in SCE coincide with hemispheric warming and are indicative of a positive 

feedback of surface reflectivity on climate S4,S5,S7,S8. With SCE retreats, less solar radiation 

was reflected to space, which may resulted in additional absorbed solar radiation by their 

Earth system. Flanner, et al. S7 estimated a mean forcing of −2.9 to −1.2 Wm-2 in the NH 

caused by snow cover reduction. Cryospheric cooling declined by 0.45 Wm-2 from 1979 to 

2008, with nearly half of that value being attributed to changes in land snow cover S7. 

Fernandes, et al.S9 found that the snow albedo feedback (SAF) is 1.06 ± 0.08% K-1 over 

the NH snow covered areas with similar magnitudes for the effect of surfaces transitioning 

from snow covered to snow free conditions and the effect of temperature on surface albedo 

over snow covered surfaces between 1982–1999.  

In response to the rapid decline of SCE, snow cover phenology has experienced remarkable 

changes, including the shortening of snow cover duration (Dd) period S10,S11, the earlier 

melt onset S12, the earlier snow end date (De) and unnoticeable changes in the snow onset 

date (Do) 
S10 at local and regional scales. For example, Beniston S13 investigated the 

variations of snow depth and duration in the Swiss Alps over the 50 years preceding 1997 

and concluded that the length of the snow season and the snow amount have substantially 

decreased; and that large-scale climate forcing plays a dominant role in controlling the 

timing and amount of snow in the Alps. Choi, et al.S10 concluded that, in the NH, the 

average snow season full duration has decreased at a rate of 0.8 week decade-1 between the 

winters of 1972/73 and 2007/08. This is due primarily to a progressively earlier offset 

advancing at a rate of 5.5 days decade-1. There was no significant change in the core snow 

season in the NH. Wang, et al. S12 retrieved the pan-Arctic snow melt onset from satellite 

Passive Microwave (PM) measurements from 1979 to 2011 and found a significant earlier 

date for the melt onset (2-3 days decade-1) concentrated over the Eurasian land sector of 

the Arctic, which was driven by the spring air temperature at surface level. Peng, et al. S14 

summarized the change in snow phenology and its potential feedback to temperature in the 

NH over the last three decades using in situ observations and concluded that earlier snow 

cover termination is systematically correlated on a year-to-year basis with a positive 

temperature anomaly during the snowmelt month with a sensitivity of −0.077 °C d−1. 

Mioduszewski, et al. S15 studied the snowmelt onset in a region of Northern Canada during 

the spring snowmelt season from 2003 to 2011 and concluded that land cover and the local 

energy balance may contribute to the variation in the snowmelt onset date. Whetton, et al. 
S11 studied the snow cover duration in the Australian Alps and found that even in the best 
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case scenario for 2030, simulations suggest a decline in average snow cover duration and 

in the frequency of years of more than 60 days of snow cover, at all sites distributed in the 

Australian Alps. 

However, the changes in snow cover phenology, its attributions and its response to climate 

change are far away from being well understood since most of the studies above are based 

on in situ observations, models or on a single source of images. The in situ measurements 

are highly dependent on the particular locations (latitude and elevation) and limited in 

spatial coverage. Meanwhile, the use of snow maps generated from a single source may 

lead to large uncertainties. For example, the visible and near-infrared satellite data are 

largely influenced by cloud coverage and snow maps derived from PM make it difficult to 

distinguish wet and shallow snow from wet or snow-free ground according to the 

assessment of the relative accuracy of hemispheric-scale snow cover maps S16. Moreover, 

the published snow cover phenology mainly focused on the NH high-latitudes, and the 

hemisphere wide snow cover phenology, and its variations, have not been documented. 

Thus, there is a need to study the NH snow cover phenology at the continental scale, using 

the multi-data approach.  

 

Text S2: Summary of datasets 

Five snow datasets were used to detect snow cover phenology in our study, including the 

reanalyzed daily snow depth dataset generated by the Canada Meteorological Center (CMC) 
S17, the binary daily snow cover mask derived from the Interactive Multi-sensor Snow and 

Ice Mapping System (IMS) S18 and the Northern Hemisphere EASE-Grid 2.0 Weekly Snow 

Cover and Sea Ice Extent (NHSCE) S18,S19, 8-Day Level 3 snow cover fraction products 

(MOD10C2) derived from the Moderate Resolution Imaging Spectroradiometer Satellite 

(MODIS) S20 and snow water equivalent (SWE) derived from the Near-real-time Ice and 

Snow Extent (NISE) dataset S21.  

CMC is generated based on the optimal interpolation of in situ daily snow depth 

observations with a first-guess field generated from a simple snow accumulation and melt 

model based on analyzed temperatures and forecasted precipitation from the Canadian 

forecast model S17. Grid cells were considered completely snow covered for snow depth 

values exceeding 1 cm. Since there are few in situ observations over the Arctic high 

latitudes, the analysis is based to a large extent on estimated snow depths from the first‐
guess field. In addition, the available snow depth observations tend to be made in open 

areas where the snow melts out earlier than in the surrounding terrain S22. 

The binary daily snow cover mask derived from the IMS is manually created by a snow 

analyst looking at all available satellite imagery, automated snow mapping algorithms, and 

other ancillary data S18. This system relies mainly on visible satellite imagery but also 

includes station observations and PM data. The IMS daily 24 km snow cover products 

cover period from early 1997 to the present.  

The weekly NHSCE product was generated based on the National Oceanic and 

Atmospheric Administration (NOAA) /National Climatic Data Center (NCDC) Climate 

Data Record (CDR) of Northern Hemisphere Snow Cover Extent at a 25km spatial 

resolution S19. The current (version 4) of NHSCE uses an improved algorithm to produce 

http://www.noaa.gov/
http://www.noaa.gov/
http://www.ncdc.noaa.gov/cdr/operationalcdrs.html
http://www.ncdc.noaa.gov/cdr/operationalcdrs.html
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pseudo-weekly snow charts from the daily, 24 km IMS product after 1997. Compared with 

IMS, NHSCE comprises the longest satellite-based SCE and covers the period from 4 

October 1966 to the present, which makes it possible to discuss the long-term snow cover 

anomaly. Thus, we use both NHSCE and IMS snow datasets in this study. Moreover, snow 

cover phenology is highly sensitive to the spatial and temporal resolutions adopted in data 

sampling, employing both IMS and NHSCE make it possible to resolve and detect effects 

occurring on a short timescales that contribute to the snow cover phenology. In addition, 

using NHSCE in this study makes our results comparable to previous studies, such as Choi 

et al. S10 and Brown et al. S5 and Brown and Robinson S4. Recent uncertainty analysis 

indicates an uncertainty in SCE of ± 3–5% at a 95% CL during the NH spring over the 

1966–2010 period S4. Since the binary value in NHSCE indicates a 50% or greater 

probability of occurrence of snow in each pixel, this data is most appropriate for large scale 

snow studies.  

The 8-Day snow cover fraction products (MOD10C2) derived from the Moderate 

Resolution Imaging Spectroradiometer Satellite (MODIS) is created by assembling 8-day 

composite MOD10A2 products with 500 m spatial resolution which is an eight-day 

composite of MOD10A1 daily snow cover maps that were derived using a fully-automated 

algorithm S20. The overall absolute accuracy of MOD10A1 is higher than 93% S23. The 8-

day composite is considered useful because in many regions, particularly at high latitudes, 

persistent cloudiness limits the number of days available for surface observations S1. In this 

study, the MOD10C2 snow cover dataset was used as a benchmark for other snow 

observations as MOD10C2 constitute consistent, objective snow estimates derived from 

high resolution visible satellite data, compared to CMC, NHSCE, IMS and NISE snow 

datasets used in this study.  

The daily SWE derived from the NISE provides global maps of SCE. The SCE mapping 

algorithm marks a grid cell as snow-covered when a computed snow depth > 2.5 cm in 

NISE is observed. The NSIDC creates the NISE product using PM data from the Special 

Sensor Microwave Imager/Sounder (SSMIS) onboard the Defense Meteorological Satellite 

Program (DMSP) F17 satellite. Previous research has suggested that the maps derived from 

visible and near-infrared data are more accurate for mapping snow cover than are the PM-

derived maps because the difficulty in distinguishing wet and shallow snow from wet or 

snow-free ground when using PM, according to the assessment on the relative accuracy of 

hemispheric-scale snow cover maps S16. However, recent study proved that although the 

SWE estimates can be highly uncertain in Arctic regions, standard 19–37 GHz SWE 

retrievals are able to provide realistic estimates of spring snow extent variability when used 

only as a proxy for snow cover S24. In this study, we only used the proxy SCE information 

derived from NISE.  

One calculated chart date based on the NHSCE and published by Rutgers University Global 

Snow Lab (http://climate.rutgers.edu/snowcover/) S25 was used to investigate the long term 

SCE anomaly. Since monthly SCE is incomplete during 1966-1971, we mainly used SCE 

from 1972 to 2014 in this study. 

The daily ground snow depth measurements generated by the Global Historical 

Climatology Network (GHCN) version 3.20 S26 and the European Climate Assessment and 

Dataset (ECAD) blended version S27 were used to identify the in situ observed snow cover 

phenology. By assembling and checking observations made in many different nations, both 

http://climate.rutgers.edu/snowcover/
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the GHCN and ECAD datasets contain daily snow depth records over the NH snow covered 

landmass, especially in high latitudes. 

The long-term, high-quality, and spatially complete Global LAnd Surface Satellite 

(GLASS) albedo product S28,S29 was used to identify the changes in land surface albedo and 

calculate the albedo contrast caused by snow cover phenology changes with the help of the 

MODIS-derived global gap-filled snow-free land surface albedo product (MCD43GF) S30. 

The GLASS land surface albedo dataset was produced from both AVHRR and MODIS 

data and has been used to quantify the radiative forcing of snow melting over Greenland 
S31 with high quality and fine spatial resolution, as well as global land surface albedo 

climatology S32. The MCD43GF were employed to get the climatological value of spatially 

complete snow-free land surface albedo, which is used to calculate the snow radiative 

forcing (SnRF) induced by land surface albedo changes at the top of atmosphere (TOA). 

The spatially complete albedo is produced using an ecosystem-reliant temporal 

interpolation technique that retrieves missing data with 3–8% error S30. Prior to calculation, 

both the GLASS and the MCD43GF surface albedo values were reproduced to generate 

the monthly mean value. During the process of reproduction, the selected quality control 

(QC) flags with “00” and “01”, indicating uncertainty of <5 and 10%, respectively, were 

used to generate the monthly mean value of GLASS. Quality assurance values between 0 

and 1, representing overall high-quality full inversion values, were used to generate the 

climatology value of monthly MCD43GF snow-free land surface albedo. 

The Clouds and Earth’s Radiant Energy System (CERES) satellite products S33, including 

global measurements of broadband (0.2-5 µm) shortwave (SW) reflected flux, broadband 

(5-100 µm) Longwave (LW) reflected flux and the broadband (0.2-100 µm) incoming solar 

minus the reflected SW and LW emitted (Net) flux at the TOA, were used to evaluate the 

influence of snow cover phenology change on the Earth’s climate system. In order to 

eliminate the role of cloud feedback, we employed in our study the variables observed in 

clear-sky conditions derived from CERES Energy Balanced and Filled (EBAF) products. 

The EBAF clear-sky filled product is spatially complete, as clear-sky fluxes are inferred 

from both CERES and MODIS measurements to produce a new clear-sky TOA flux 

climatology that provides TOA fluxes in each 1˚x1˚ region every month S34.  

Monthly surface temperature and precipitation derived from the Climatic Research Unit 

(CRU) Time-Series (TS) Version 3.22 S35 were used to quantify the causes of snow 

phenology changes. The CRU dataset is gridded at a 0.5° spatial resolution based on the 

analysis of over 4000 individual weather station records.  

The radiative kernel expressed as the TOA net shortwave anomalies associated with a 1% 

change in the surface albedo estimated using radiative transfer algorithms from the 

Community Atmosphere model (CAM3) in the National Center for Atmosphere Research 

(NCAR) and the Atmosphere Model 2 (AM2) of the Geographical Fluid Dynamic 

Laboratory developed by Shell et al. S36 and Soden et al. S37 were used to quantify the snow 

radiative forcing caused by the land surface albedo change in response to snow cover 

anomaly. 

In order to keep the snow information in five different snow datasets and study the spatial 

characteristics of snow cover phenology as well as to establish the mechanisms controlling 
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change, we first identify the snow cover phenology based on different snow datasets. Then, 

all the results were converted to gridded Do, De and Dd at a 0.5-degree spatial resolution 

with the help of gdalwarp (http://www.gdal.org/gdalwarp.html). The average resampling 

computes the average of all non-NODATA contributing pixels in our study. 

 

Text S3: Multi-data snow cover phenology retrieve and uncertainty analysis 

Taking the snow end date De as an example as displayed in Fig.S2 and Fig.S3, the 

individual sources of snow observations differ in mean amplitude and spatial distribution 

depending on spatial resolution, the method (or algorithm) used to detect snow cover, as 

well as different definitions of snow cover. This disparity in De retrieved from individual 

snow observations mainly distributed over high elevation regions in the mid-latitudes, 

especially over the Tibet Plateau (TP) and the Rocky Mountains area, in which De derived 

from CMC is much later than the value derived from the other four observations, especially 

NHSCE. Meanwhile, De derived from NISE is much earlier than the value derived from 

the other four data sets. This is mainly caused by the different definitions of snow cover 

used by CMC and NISE and described above. A summary of the snow onset date (Do), De 

and the snow duration days (Dd) estimates from the five snow datasets from 2001 to 2014 

(Table S2) show that the De averages around 127.86 (day of year) with an inter-dataset 

standard deviation of 5.61 days. The minimum De derived from NISE is of 104.62 and 

maximum De retrieved from MODIS is found to be 135.67. 14-year changes of De 

calculated by linear regression model for each dataset displayed earlier De in almost all 

data sets, however, the changes in CMC and NISE are not statistically significant at 95% 

confidence level (CL) as described in Table S3. 

In order to compare the datasets on a consistent basis, De derived from different datasets 

were converted to standardized anomalies using the mean and standard deviation calculated 

for the 2001-2014 period. The impact of converting the individual De series into a series of 

standardized z-score anomaly is demonstrated in Figs.S4c and S4d. The consistency of 

each dataset was evaluated by computing the correlation and root mean square error 

(RMSE) between each dataset and the multi-dataset mean excluding the data set being 

verified. 

The evaluation of the consistency of De is summarized in Tables S4 and S5. The results 

indicate generally consistent agreement between De series derived from each individual 

dataset. In most cases, correlation coefficients are greater than 0.6 and RMSE less than 

0.84. CMC and NHSCE derived De series are exceptions with notable discrepancies from 

the multi-data set average, due to snow identification issues mentioned above. The multi-

dataset average was observed to be in consistently good agreement with MODIS 

benchmarks, with a highest correlation coefficient of 0.93 and a lowest RMSE of 0.37. The 

performance of NISE is better than CMC and NHSCE in De identification with a 

correlation of 0.71 and a RMSE of 0.72, which means that the added microwave-based 

NISE observations provide additional justification for using a multi-dataset approach for 

mapping De over the NH. 
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It had been intended to remove the poorer performing De series from the final average 

anomaly series. However, multiple regression analysis revealed that all of the datasets were 

statistically significant (95% CI) variables in explaining the variance in the multi-dataset 

anomaly series so there was no compelling reason to eliminate any of the datasets from the 

final anomaly series. This approach was also applied at pixel scale to remove the poorer 

performing individual De series from the final average anomaly series in each pixel. The 

correlation and RMSE of De anomaly series with the average anomaly series from the four 

other data sets above the 95% CI, over the NH from 2001 to 2014, are displayed in Fig.S5. 

The stratification of the evaluation results in Tables S4 and S5, referring to the correlation 

and RMSE analysis, reveal that the highest resolution dataset (MOD10C2) has the highest 

correlation and lowest RMSE compared to the multi-data set average. Among the medium 

resolution datasets (IMS, CMC, NISE and NHSCE), the visible and infrared data based 

IMS dataset with daily temporal resolution performs better, followed by CMC and NISE. 

NHSCE shows the poorest performance among medium resolution datasets due to issues 

related to the adopted definition of snow and to the temporal resolution. 

 

Text S4: Validating multi-data snow cover phenology using in situ observations 

In situ snow depth data are used to verify the performance of the multi-data set snow cover 

phenology to capture the distribution of “real” snow cover phenology in our study. To 

avoid the impact of ephemeral snow on the ground on the identification of snow onset date 

Do, snow end date De, and snow duration days Dd as well as match the temporal resolution 

of satellite observations, for GHCN and ECAD daily ground snow depth measurements, 

Do is defined as the first consecutive five days in the accumulation season and De is defined 

as the last consecutive five days of persistent snow cover in the melting season. Dd is 

defined as the number of days from the onset of snow cover to the end of snow cover. 

Limited by the data availability of GHCN and ECAD, in situ observed Do, De, and Dd from 

2001 to 2012 were used in the comparison. 

Fig.S6 shows the spatial patterns of the 12-year averaged Do, De, and Dd over the GHCN 

and ECAD covered stations during 2001–2012. There are clear latitudinal gradient patterns 

for Do, De, and Dd from middle to high latitudes. In most sites, the observed Do, De, and Dd 

are consistent with the multi-data retrieved Do, De, and Dd results, R2 varies as 0.72, 0.76, 

and 0.81 at the 95% CI. However, compared with the bias in Do and De, the bias in observed 

Dd and the multi-data retrieved Dd is much larger. This is mainly because the bias in Dd 

superimposed the bias in Do and De. Moreover, the value of multi-data retrieved snow cover 

phenology are higher than the in situ observed snow cover phenology in low Do, De, and 

Dd value distributed regions with opposite trends in high Do, De, and Dd value-distributed 

regions as demonstrated in Figs.S6g, S6h, and S6i. This phenomena was mainly caused by 

the low spatial resolution of the multi-data snow cover phenology series, which provides 

the average Do, De, and Dd value in pixel scale. Limited by spatial resolution of the snow 

date sets used in this study, the minima unit in the multi-dataset snow cover phenology are 

pixels in 0.5°, which cannot totally catch and reflect the “real” value of Do, De, and Dd 

specific spot location. 
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The error distribution of differences between the in situ observed Do, De, and Dd, and multi-

data retrieved Do, De, and Dd (in situ observed De minus multi-data retrieved De) are shown 

in Figs.S6j, S6k, and S6l. The performance of satellite-retrieved Do, De, and Dd with low 

elevation are better than its performance with high elevation. The stations with elevation 

<500 m, 500–1000 m, and >1000 m account for 77.3%, 12.5%, and 10.2% of the total 216 

stations used in this study, in which 86% and 69% of the stations at an elevation >1000 m 

record an error range beyond -5 days to 5 days in De and Dd, respectively.  

Previous research has proved that the raw in situ observations would give results that are 

highly dependent on the particular locations (latitude and elevation) and reporting periods 

of the actual weather stations. Such results would mostly reflect those accidental 

circumstances rather than yield meaningful information about the climateS38. However, as 

shown in Fig.S6, the multi-dataset Do, De, and Dd still skillfully captures Do, De, and Dd 

over the NH when the bias is -0.89, -1.96, and -6.32 days as compared to the in situ 

observed results, which proves that the multi-data approach used in our study is reliable. 

 

Text S5: Sensitivity and Contribution Calculation 

Snow cover phenology is largely determined by the land surface temperature and 

precipitation data. For sensitivity of Do to Ta and Pa, we regressed Do as the dependent 

variable with Ta and Pa as independent variables.  

Do = a× Ta + b× Pa + c                                                                                                       (1) 

Here, we assumed that the interannual variability of Do was driven by Ta and Pa, which is 

reflected by the term a× Ta, b× Pa. Then, we defined the regression coefficient a as the 

sensitivity of Do to Ta, which removed the effects of Pa on Do, and the regression coefficient 

b as the sensitivity of Do to Pa, which removed the effects of Ta on Do. This formula was 

employed by Peng, et al. S14 to identify the sensitivity of De to the temperature. 

De mainly depends on Tm and the maximum spring snow depth to melt, in which the 

maximum snow depth in spring is determined using Ta and Pa
S14,S39. For the sensitivity of 

De to Ta, Pa and Tm, we performed a multiple linear regression using De as the dependent 

variable with Ta, Pa, and Tm as independent variables. 

De = d× Ta + e× Pa+ f× Tm + g                                                                                            (2) 

Here, we assumed that interannual variations of De come from changes in Ta, Pa, and Tm, 

which are reflected by the term d× Ta, e× Pa and f× Tm. Then, the regression coefficient d 

is defined as the sensitivity of De to Ta, which removed the effects of Pa and Tm on De, the 

regression coefficient e as the sensitivity of De to Pa, which removed the effects of Ta and 

Tm on De, and the regression coefficient f as the sensitivity of De to Tm, which removed the 

effects of Ta and Pa on De.  

Dd is largely decided by the entire snow season temperature (Ts) and accumulated snow 

depth, which is the resultant of Ta, Tm, and Pa. For sensitivity of Dd to Ts and Pa, we 

regressed Dd as the dependent variable with Ts and Pa as the independent variables. 

Dd = h× Ts + i× Pa + j                                                                                                          (3) 

javascript:void(0);
javascript:void(0);
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Here, we assumed that the interannual variations of Dd comes from changes in Ts, Pa, which 

is reflected by the term h× Ts, i× Pa. Then, the regression coefficient h is defined as the 

sensitivity of Dd to Ts that removed the effects of Pa on Dd and the regression coefficient i 

is defined as the sensitivity of Dd to Pa which removed the effects of Ts on Dd. 

To compare the contributions of Do, De, and Dd from each variable consistently, all the 

variables were converted to the standardized anomalies (z-score) using the mean and 

standard deviation in the contribution calculation. Contributions of each variable to Do, De, 

and Dd variability were computed annually and zonally to display the changing influence 

of accumulation and melting season climate on the underlying snow cover phenology 

variability. The contributions of Ta and Pa to Do were computed by regressing the annual 

and zonal time series of Do z-scores against time series of z-scores of Ta and Pa. The 

resulting regression coefficients were then multiplied by the time series of Ta and Pa z-

scores to derive the contributions of Ta and Pa to the Do z scores. Similarly, the 

contributions of Ta, Pa, and Tm to De were computed by regressing the annual and zonal 

time series of De z-scores against the time series of z-scores of Ta, Pa, and Tm. The resulting 

regression coefficients were multiplied by the time series of Ta, Pa, and Tm z-scores to 

derive the contributions of Ta, Pa, and Tm to the De z-scores. The contributions of Ts and Pa 

to Dd were computed by regressing the annual and zonal time series of Dd z-scores against 

time series of z-scores of Ts and Pa. The resulting regression coefficients were then 

multiplied by the time series of Ts and Pa z-scores to derive the contributions of Ts and Pa 

to the Dd z-scores.  
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Supplementary Figures 

 

 

Figure S1. Monthly snow cover extent (SCE) anomaly from 1972 to 2014 over the NH. Chart data was 

calculated based on NH SCE CDR v01r01S25 and published by the Rutgers University Global Snow Lab 

(http://climate.rutgers.edu/snowcover/). The anomaly value was calculated by monthly SCE minus 43-year 

averaged SCE in corresponding month. 

 

 

http://climate.rutgers.edu/snowcover/
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Figure S2. 14-year averaged values of snow end date (De) in day of year detected by (a) CMC, (c) NHSCE, 

(e) MOD10C2, (g) IMS, and (i) NISE from 2001 to 2014. 14-year changes of De calculated from linear 

regression model from CMC, NHSCE, MOD10C2, IMS, and NISE are presented in (b), (d), (f), (h), and (j). 

Changes are derived from linear slope are multiplied by the time span. The figure was created using ArcGIS 

(version10.2.2) S40. 

 

 

Figure S3. Standard deviation of 14-year (a) averaged De and (b) changes detected by five individual snow 

datasets summarized in Table S1 from 2001 to 2014. The figure was created using ArcGIS (version10.2.2) 

S40. 

Figure S4. Annual averaged raw (a) Do, (c) De, and (e) Dd series and the corresponding standardized (b) Do, 

(d) De, and (f) Dd anaomaly (z-score) series detected by five snow data sets over the NH from 2001 to 2014.  
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Figure S5. Correlation and RMSE of each De anomaly (z-score) series with the averaged anomaly series 

from the other four snow data sets used in this study. Left column is the correlation of (a) CMC, (c) NHSCE, 

(e) MOD10C2, (g) IMS, and (i) NISE with the average anomaly series from the other four snow datasets. 

Right column is the corresponding RMSE value of (b) CMC, (d) NHSCE, (f) MOD10C2, (h) IMS, and (j) 

NISE with the average anomaly series from the other four snow data sets. The figure was created using 

ArcGIS (version10.2.2) S40. 
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Figure S6. 12-year annual averaged value of (a) Do, (b) De, and (c) Dd derived from the GHCN and the 

ECAD in situ snow observations from 2001 to 2012. (d) Elevation distributions of in situ snow observations 

from GHCN and ECAD. Scatter plots of 12-year averaged in situ observed and multi-dataset retrieved (e) 

Do, (f) De, and (g) Dd. We employed data from 2001 to 2012 instead of 2001 to 2014 because of unavailability 

of in situ snow depth in 2013 and 2014 in most of GHCN and ECAD stations. The figure was created using 

ArcGIS (version10.2.2) S40. 
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Figure S7. Spatial distribution of 14-year averaged value of (a) Dd, (c) Do, and (e) De retrieved from multi-

data series from 2001 to 2014. 14-year anomaly (z-score) of (b) Dd, (d) Do, and (f) De from 2001 to 2014. (g) 

Correlation between Do and Dd anomaly series. (h) Correlation between De and Dd anomaly series. Error bar 

in (b), (d), and (f) are generated from standard error in multi-data Dd, Do, and De series. The figure was 

created using ArcGIS (version10.2.2) S40. 

 

Figure S8. (a) Annual-averaged Ta, Tm, Ts, and Pa anomalies from 2001 to 2013. (b) Zonal averaged Ts, Ta, 

Tm, and Pa anomalies from 2001 to 2013. 
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Figure S9. (a) Annual averaged Do anomaly (z-score) and contributions (z-score) from Ta and Pa. (b) Annual 

averaged Dd anomaly (z-score) and contributions (z-score) from Ts and Pa.  

 

 

Figure S10. (a) Sensitivity of Do to Ta when the impacts of Pa are removed. (b) Sensitivity of Do to Pa when 

impacts of Ta are removed. Black dots indicate correlation between Do and Ta in (a), Do and Pa in (b) are 

significant at 90% CL. The figure was created using ArcGIS (version10.2.2)S40. 

 

 

Figure S11. (a) Sensitivity of De to Ta when impacts of Pa and Tm are removed. (b) Sensitivity of De to Pa 

when the impacts of Ta and Tm are removed. (c) Sensitivity of De to Tm when impacts of Ta and Pa are removed. 

Black dots indicate correlation between De and Ta in a, De and Pa in b, De and Tm in c are significant at 90% 

CL. The figure was created using ArcGIS (version10.2.2) S40. 
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Figure S12. (a) Sensitivity of Dd to Ts when impacts of Pa are removed. (b) Sensitivity of Dd to Pa when 

impacts of Ts are removed. Black dots indicate correlation between Dd and Ts in a, Dd and Pa in b are 

significant at 90% CL. The figure was created using ArcGIS (version10.2.2)S40. 

 

 

Figure S13. Clouds and Earth’s Radiant Energy System (CERES) observed 13-year changes of (a) melting 

season shortwave flux, (c) longwave flux and (e) Net flux at the top of atmosphere (TOA) from 2001 to 2013. 

The linear correlations between snow end date (De) with TOA (b) shortwave, (d) longwave, and (f) net flux 

in melting seasons from 2001 to 2013. Changes are derived from the linear slope multiplied by the time span. 

Black dots in (a), (c), and (e) indicate that the changes are significant at 90% CL. Black dots in (b), (d), and 

(f) indicate that the correlation are significant at 90% CL. The figure was created using ArcGIS 

(version10.2.2)S40.  
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Supplementary Tables 

 

Table S1. Summary of snow datasets used in this study 

Name Time span Spatial 

resolution 

Temporal 

resolution 

Reference/Sources 

CMC 2000.09-2014.12 24 km daily http://nsidc.org/data/nsidc-0447 

IMS 2000.09-2014.12 24 km daily http://nsidc.org/data/g02156 

NHSCE 2000.09-2014.06 25 km weekly http://nsidc.org/data/nsidc-0046 

MOD10C2 2000.09-2014.12 0.05° 8-day http://nsidc.org/data/MOD10C2  

NISE 2000.09-2014.12 25 km daily http://nsidc.org/data/nise1 

 

 

Table S2. 14-year averaged values of snow onset date (Do), snow end date (De), and snow duration days 

(Dd) in day of the year detected by five snow data sets between 32°N and 75°N from 2001 to 2014. 

Data CMC IMS NHSCE MODIS NISE Average 

Do 291.32 

(2.53) 

294.72 

(2.29) 

301.59 

(3.10) 

279.49 

(1.39) 

289.53 

(1.39) 

290.53 

(8.58) 

De 130.71 

(2.92) 

122.79 

(2.86) 

122.28 

(2.43) 

135.67 

(1.89) 

104.62 

(1.62) 

127.86 

(5.61) 

Dd 196.57 

(3.76) 

176.88 

(4.05) 

174.34 

(3.14) 

217.91 

(1.87) 

164.80 

(3.68) 

186.10 

(18.97) 

The value in parentheses indicates standard deviation. 

 

 

Table S3. 14-year averaged changes of snow onset date (Do), snow end date (De) and snow duration (Dd) 

detected by five snow data sets over the NH between 32°N to 75°N from 2001 to 2014. 

Data CMC IMS NHSCE MODIS NISE 

Do 4.42 (0.06) -0.20 (0.93) -6.30 (0.04) 1.09 (0.43) 2.58 (0.05) 

De 0 (0.99) -6.26 (0)  -3.89 (0.01) -1.47 (0.03) -3.20 (0.37) 

Dd -0.86 (0.82) -5.66 (0.15) 2.38 (0.45) -2.44 (0.08) -5.58 (0.12) 

The value in parentheses indicates standard deviation in the first row and P value in the second row. 

 

http://nsidc.org/data/nsidc-0447
http://nsidc.org/data/g02156
http://nsidc.org/data/nsidc-0046
http://nsidc.org/data/MOD10C2
http://nsidc.org/data/nise1
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Table S4. Correlation (r) of snow onset date (Do), snow end date (De) and snow duration days (Dd) z-score 

standardized series with the average anomaly series from the four other snow datasets.  

Data MODIS CMC NHSCE IMS NISE 

Do 0.71 0.65 (0.40) 0.67 (0.75) 0.81 (0.59) 0.73 (0.54) 

De 0.93 0.61 (0.78) 0.65 (0.68) 0.80 (0.82) 0.71 (0.76) 

Dd 0.80 0.79 (0.67) 0.79 (0.63) 0.91 (0.85) 0.68 (0.64) 

The value in parentheses indicates correlations of Do, De, and Dd anomalies series with the MODIS. 

 

Table S5. The RMSE for z-score standardized snow onset date (Do), snow end date (De), and snow duration 

days (Dd) anomalies series from each data series versus the average standardized anomaly series from the 

four other snow datasets. 

Data MODIS CMC NHSCE IMS NISE 

Do 0.45 0.58 (1.09) 0.51 (0.44) 0.28 (0.62) 0.50 (0.79) 

De 0.37 0.84 (0.67) 0.79 (0.80) 0.60 (0.77) 0.72 (0.68) 

Dd 0.30 0.34 (0.57) 0.43 (0.73) 0.14 (0.25) 0.56 (0.54) 

The value in parentheses indicates RMSE of Do, De, and Dd anomalies series with the MODIS.  
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